skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bergh, Bjarne"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We investigate the performance of parallel and adaptive quantum channel discrimination strategies for a finite number of channel uses. It has recently been shown that, in the asymmetric setting with asymptotically vanishing type I error probability, adaptive strategies are asymptotically not more powerful than parallel ones. We extend this result to the non-asymptotic regime with finitely many channel uses, by explicitly constructing a parallel strategy for any given adaptive strategy, and bounding the difference in their performances, measured in terms of the decay rate of the type II error probability per channel use. We further show that all parallel strategies can be optimized over in time polynomial in the number of channel uses, and hence our result can also be used to obtain a poly-time-computable asymptotically tight upper bound on the performance of general adaptive strategies. 
    more » « less